
ht. J. Heat Mass Transfer. Vol. 14. pp. 1175-1202. Pergamon Press 1971. Printed in Great Britain 

COMPUTATION OF TRANSIENT TEMPERATURES IN 

REGENERATORS 

J. V. EDWARDS and R. EVANS 

Research Dept., South Wales Group, British Steel Corporation 

and S. D. PROBERT 

Mechanical Engineering Dept., University College of Swansea, Glamorgan, Wales 

(Received 21 July 1969 und in revisedform 21 October 1970) 

Abstract-A non-iterative method for computing the temperature variations in a regenerator at cyclic 
equilibrium has been developed by earlier workers. Previous attempts to apply this technique have pro- 
duced inaccurate results, but the present authors have obtained reasonable results for selected examples 
without diminishing the step size for numerical integration. This has been achieved by ensuring that certain 
infinite series arising in the computation are summed accurately, and by selecting sufficiently accurate 
forms for numerical integration. 

The method was previously derived for regenerators operating with equal heating and cooling periods, 
but has now been modified for the more general case. The direction of further development is indicated. 
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semi-thickness of regenerator 
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constant introduced in equation 
(45) ; 
matrices arising from approxi- 
mate forms of definite integrals 
[see equations (29) and (30)] ; 
matrices defined in equations 
(35) and (36); 
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* Some symbols are used differently in the Appendix. 
See note at beginning of Appendix. 
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constant introduced in equation 

(45) ; 
matrices arising from numerical 
approximation of definite in- 
tegrals and introduced in equa- 
tions (82) and (83); 
z - sl, or z depending on the 
value of z’ ; 
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time mean change in Ji across 
the whole regenerator 
(measured from cold end to 
hot end) ; 
matrices formed from values of 
J at discrete values of z’ ; 
Fi at i = (r/m); 
column matrix {F2, F,} ; 
F’ at [ = (r/m); 
forl<s<n+2, oneof(n+2) 
hypothetical forms of F’_, [see 
equations (67)] ; 
the solution for F’ at 
< = (+?I)(-m < r < + m) 
which satisfies the hypothetical 
boundary state F’I”!, ; 
the jth element of the column 
matrix F:‘“’ ; 
function defined in equation 

(81); 
(a/n), time interval for numeri- 
cal integration ; 
coefficient of heat transfer be- 
tween fluid and solid in appro- 
priate period i ; 
overall heat transfer coefficient 
per cycle ; 
for 1 < j < 6, functions de- 
fined in equations (54H56) and 

(58k-W ; 
subscript to distinguish heating 
period from cooling period ; 
i = 1 during the heating period 
and i = 2 during the cooling 
period ; 
unit matrix ; 
definite integrals defined in 
equations (37) and (41); 
contribution to Ii from an ele- 
ment of duration h ; 
an integer ; 
thermal conductivity of solid 
tilling in the direction perpen- 
dicular to fluid flow ; 
for 1 < s < n + 2, constant co- 
efficient in equation (68); 
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p:, 
Qt 

'R:; 

:i, 

t(Y7 a 

t’(y, Q, 

ti(y, @, 

T, 
T’. 
7, T,, 

width of solid wall in real 
regenerator ; 
length of regenerator channel ; 
integral number of subdivisions 
of regenerator length ; 

(2WSia/kpL), dimensionless 
parameter, characteristic of 
appropriate period i; 
integral number of steps into 
which each period is subdivided 
for stepwise approximate inte- 
gration ; 
an integer ; 
(h&k), Nusselt number charac- 
teristic of appropriate period i; 
number of walls in real re- 
generator ; 
channel perimeter ; 
duration of heating or cooling 
period when these are equal; 
duration of appropriate period, 
i; 
a matrix defined by equation 

(62) ; 
P’ at < = (r/m); 
function defined in equation 
(95) : 
an integer. Also equations (21) 
and (22) are applied at discrete 
values of r defined by r = @r/n) ; 
an integer ; 
function defined in equation 
(96) ; 
an integer ; 
specific heat of fluid in appro- 
priate period, i ; 
current fluid temperature in 
either period ; 
time-mean value of t in appro- 
priate period, i ; 
as t(y, 0) but dimensionless ; 
t’(y, 0) in appropriate period i ; 
solid temperature ; 
as T, but dimensionless ; 
matrices originating in equation 
(32) and defined by equation (34); 
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used generally to signify t, t,, tz, 
or T; 
magnitude of U in dimension- 
less units; 
functions defined in equation 

(46) ; 
a function defined in equation 

(49) ; 
dimensionless time defined in 
equation (72); 
matrices defined in equations 
(89) and (90) ; 
mass of fluid occupying unit 
length of regenerator channel; 
mass flow rate of fluid per 
channel ; 
distance from solid surface into 
regenerator wall ; 
function defined by equation 

(23) ; 
function defined by equation 

(24) ; 
matrix constructed from values 
of X,, (X2) at discrete values of 
C and z’; 
distance along regenerator 
channel, measured from mid- 
point ; 
a0 
2’ dimensionless time scale ; 

z changed to an origin at the 
proceeding reversal ; 
matrices defined by equations 
(91) and (92); 
diffusivity of regenerator wall 
material ; 
sth root of J/3 tan Jp = 1; 
matrices occurring in equation 
(31) and defined by equations 

(33); 
(2y/L), dimensionless distance 
along regenerator channel, 
measured from mid-point; 
functions defined by equations 
(2W27); 
time, measured from the com- 

mencement of a heating period ; 
(x/a), dimensionless measure of 
distance from solid surface ; 
as T’, but referred to dimension- 
less independent variables & [ 
and z; 
multipliers defined in equations 
(38) and (42); 
particular instantaneous values 
of z’; 
(z/S’&), dimensionless time scale; 
functions defined by equations 
(79) and (80); 
column matrices whose ele- 
ments are formed from discrete 
values of C& and $2 ; 

XC, z), x1 CL 4 and x2G ZX t'ty, @, t; 01, O), 
and t;(y, 0) transformed to vari- 
ables 5 and z ; 

Q used for 52, or fz, when these 
are equal ; 

% (alPl/a2), 0, = (a2P,/a2), di- 
mensionless parameters charac- 
terising duration of hot and 
cold periods respectively (cf. z). 

INTRODUCTION 

A REGENERATOR is a device which transfers 
heat from a hot medium to a cooler medium by 
means of an intervening heat store. The particu- 
lar ~angement treated here is iIlustrated in 
Fig la, where a fluid flows over a solid matrix 
for a time PI, after which a relatively cooler 
fluid flows in the reverse direction for time P,. 
This process is then repeated for all time, the 
flow rates and entry temperatures of both 
fluids being periodic functions of time. The 
system eventually settles to a state where, from 
an arbitrary origin of time, fluid and solid 
temperatures are repeated exactly after each 
time interval of (PI + P2). This state is termed 
“cyclic equilibrium”, or, when stated as a 
mathematical condition, the term “reversal 
condition” is used. 

This problem has been treated by several 
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(a 1 Real regenerator 

L = Total regenerator length 

20; Wall thickness of real regenerotor 
0 = Wall separation 

1 = Widthof wall 

i = Number of walls in real regenerator 

I b) Single channel equivalent 

Insulated face 

Cold fiwd 

FIG. 1. Relation between real regenerator and equivalent single channel regenerator 

workers, the earliest being Nusselt [l], who 
obtained closed solutions for some simplified 
cases. Later workers have made simplifying 
mathematical approximations [2], or have used 
empirical values for the overall heat transfer 
coefficient, hi, [3], while this same empirical step 
is implicit in other solutions of more complex 
mathematical derivation [4, 51. The most 
successful treatment of a purely mathematical 
nature is undoubtedly that due to Hausen [6], 
who extrapolated certain relationships from 
the perfectly conducting wall instance to the 
case for a wall with finite conductivity. Opinion 
is divided as to whether or not this extrapolation 
is exact. (In the present authors’ view this has 
not been proved, and Hausen himself used the 
term “improved calculations”, rather than 
“exact calculations”.) Hausen’s results were 
expressed in terms of two parameters, which 
were dimensionless representations of the re- 
versal time and the surface area. The general 

case, where these parameters are unequal in the 
heating and cooling periods, was not analysed 
rigorously but Hausen suggested using geo- 
metric mean values under these conditions. 
Comparison with results obtained by digital 
simulation [7] and with results reported in this 
paper confirm that the method proposed by 
Hausen holds to a good degree of accuracy. 

The various methods that have been proposed 
for calculating the thermal performance of 
regenerators have been surveyed recently [8]. 
The present research is concerned particularly 
with the development of a technique for digital 
computation of a regenerator. This approach 
will be useful when several computations are 
required, such as for an optimisation exercise. 
Also design detailing, such as the selection of 
materials may require a detailed knowledge 
of temperature distribution, rather than merely 
an overall performance factor. Even using a 
simplified approach for hand calculations, the 
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process can be laborious [9], and so a technique 
using a digital computer may be justified even 
for single calculations, once a suitable program 
has been developed. 

The method used by the authors is a develop- 
ment of that originally proposed by Collins 
and Daws [lo]. The main advantage of this 
method over that of complete digital simulation 
is that the reversal condition is satisfied analytic- 
ally, thus eliminating the need for simulating 
successive cycles. The computation time is, 
therefore, predictable, and there is no problem 
of confusion between slow convergence and 
cyclic equilibrium. 

Application of the Collins and Daws’ method 
has previously been limited to three computed 
examples. The first computation was carried 
out by Taylor [lo] on a desk machine, and 
the results showed a thermal balance deficiency 
of 10 per cent, Of the two examples computed 
by Albasiny [ll], using an electronic digital 
computer, one gave results which were thermally 
balanced to within 1.5 per cent, while the other 
example showed a heat balance deficiency 
exceeding 13 per cent. 

The aim of the present work was twofold :- 

(a) to show that results could be obtained 
accurately and reliably, by means of the 
Collins and Daws’ method; and 

(b) to extend the original analysis to include 
unequal heating and cooling periods. 

The Iirst aim has been achieved by selecting 
suitable finite difference forms for numerical 
integration, and by ensuring that infinite series 
arising in the computation are accurately 
summed. The second aim has been achieved 
by suitable substitution of variables, and this 
generalised form has been confirmed by a trial 
computation. 

A few anomalous results obtained to date 
are indicated, and these are now the subject 
of further study. 

For convenience, the regenerator structure 
is assumed to be reduced to an “equivalent 
single channel”. This is merely a simpler 

hypothetical structure, whose mathematical 
definition is thermally identical with that of 
the real regenerator. 

STRUCTURE OF THE EQUIVALENT SINGLE 

CHANNEL 

The concept of the equivalent single channel 
is most conveniently explained in relation to a 
real regenerator of the form shown in Fig l(a). 
In this arrangement, a series of equally spaced, 
identical, solid walls forms a system of similar 
ducts. All wall surfaces are parallel and extend 
throughout the regenerator in the direction of 
fluid flow. The regenerator width, I, is large 
compared with the separation, a’, of the walls. 
Consequently, no serious error is introduced 
by neglecting the areas of the other surfaces 
which complete the regenerator boundary. All 
physical quantities vary only in the flow 
direction, and are identical in each duct. A 
system of this type can be replaced mathematic- 
ally by a single channel regenerator. 

The equivalent regenerator is shown in 
Fig. l(b). It is bounded on two sides by walls 
whose surfaces are all parallel. Additional 
surfaces, which complete the boundary, are 
of negligible area In the direction of fluid flow, 
this regenerator has the same length, L, as the 
real regenerator. Also, in any plane perpendicular 
to the fluid flow, the real and equivalent 
systems have the same wetted perimeter, 2Rl. 

In the real regenerator, each wall is heated 
or cooled equally at both of its surfaces. Thus in 
any plane section perpendicular to the fluid 
flow, no heat flows across the mid-thickness 
of any wall In the single channel equivalent, 
only one face of each wall is wetted, and so the 
wall surfaces remote from the duct are assumed 
to be insulated. In this case, the equivalent 
wall thickness is half the thickness of the real 
regenerator wall. The physical properties of 
equivalent walls are identical to those of the 
real walls. 

Operating parameters (e.g. fluid flow rates, 
reversal times, and heat transfer coefficients) 
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specified for the real regenerator, apply un- 
changed to the equivalent regenerator. 

The concept of the equivalent single channel 
reduces the regenerator problem to one tem- 
poral and two spatial dimensions. Most calcula- 
tion methods treat this simplified form of the 
problem. As seen above, for a simple filling of 
the type shown in Fig. l(a). the equivalent 
single channel can be derived logically from 
physical considerations. For more complex 
geometries, some authors [3, 71 recommend 
that the equivalent single channel regenerator 
should have a wall thickness equal to the ratio- 
volume of solid filling to total wetted surface 
area The real and equivalent regenerators 
should always have the same wetted surface area. 

SIMPLIFYING ASSUMPTIONS 

Several assumptions, common to most 
analyses of the regenerator problem. are listed 
below. Most of these are featured in the com- 
puted examples. However, the analysis will 
sometimes cope with the more general case. 
and when this is so will be clear for the subsequent 
text. 

(a) The mass flow rate of the fluid is large 
enough to permit the use of the approximation 

at at at 
KS, Y& + WiSi z N qSi ay (1) 

(The left hand side is the expression for the 
rate at which the fluid absorbs heat from unit 
area of wall surface when gaseous conduction 
is assumed negligible.) 

If this approximation is not sufliciently 
accurate, a suitable change of variable can 
achieve the form on the right hand side of the 
equation [12-141. 

(b) Conduction through the solid walls is 
negligible in the direction of the gas flow. This 
assumption simplifies the conductivity equation 
to an unidirectional form. Practical considera- 
tions which justify this approximation are : 

(i) Temperature gradients parallel to the 

fluid flow are usually much smaller than 
gradients normal to the wall surface; and 

(ii) in many applications, the tilling consists 
of unbonded courses of brick, and so 
there is a high thermal resistance between 
successive layers. 

(c) The flow regime is sufficiently turbulent 
to achieve a uniform fluid temperature in any 
plane perpendicular to the direction of flow. 

(d) Heating and cooling periods are of equal 
duration. 

(e) Physical properties of the solid tilling and 
of the hot and cold fluids are invariant both 
spatially and temporally. 

(f) Wall dimensions are constant throughout 
the regenerator. 

(g) Entry temperatures of the hot and cold 
fluids are constant in time. 

(h) In both periods, the heat transfer rate 
is assumed to be proportional to the tempera- 
ture difference between the solid surface and 
the adjacent fluid. 

(i) Heat transfer coefficients are constant 
throughout each period, and do not vary along 
the regenerator. 

MATHEMATICAL STATEMENT OF THE 

PROBLEM 

Basic equations 
Collins and Daws [lo] stated the problem for 

equal heating and cooling periods. This par- 
ticular form is stated in this section. The sub- 
sequent text as far as equation (36) follows that 
of Collins and Daws, except that some algebraic 
detail is omitted, and amendments have been 
introduced to achieve generality whenever 
possible. 

The y-axis, parallel to the fluid flow, has its 
origin at the centre of the regenerator. Hot 
fluid enters the regenerator at y = + (L/2), and 
cold fluid enters at y = -(L/2). 

The x-axis is r perpendicular to the wall 
surfaces, and has its zero at one of those surfaces. 
Its positive direction is into the solid wall at 
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the origin. Since the two walls bounding the duct are identical, and since the fluid temperature is 
independent of x, only positive x is relevant. 

The commencement of an arbitarily selected heating period is taken as the origin of time. 
The structure of the single channel regenerator and the assumption of zero conductivity parallel 

to the fluid flow reduce the conductivity equation to the unidirectional form 

a2T(x’y’ ‘) a a’@9 ” ‘), for 0 < x < a 
a2 = ae 

. .> - (Lj2) < y < + (L/2) . . 8 > 0. 3 A (2) 

Since the wall is impervious to heat at x = a, 

aT(x, Y, e) 

ax 
= 0, for x = a, 8 > 0. (3) 

At the wetted surface of the wall, for the heating period, the continuity and heat balance equations 
are respectively 

_ k aT(x, Y, 0) 
ax 

= h,(t - T) 

I 

for 2fiP G 0 G (2Fr + l)P and x = 0. (4) 

The latter equation incorporates the approximation of equation (1). 
Similarly, for the cooling period, 

-kg = h,(t - T) 

W,S,at’= kpg 

for (2~ + l)P G 8 G (2ti + 2)P and x = 0. (5) 

ay 

Taking the general case where the inlet temperatures of the hot and cold fluids are not constant 
in their respective periods, but nevertheless are known functions of time, 

t(~, e) = t,(~, e), 

and in particular, 

I 

for 2nP G 8 G (2n + 1)P. 

t[(~2), ei = tI[(Lj2), 01 

(6) 

Also, 

t(~. e) = t2(y, e), 

and in particular, 

t[- (~2)~ ei = r2[- (~12)~ e] 

for (2ii + 1)P < 8 < (2fi + 2)P. (7) 

The problem is to determine T(x, y, e), tr(y, 0) and t2(y, 0) for all y and all 8, when the regenerator 
operates in the condition of cyclic equilibrium. 
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Non-dimensional form of basic equations 
When the mean fluid inlet temperatures are t,(L/2) and &[ - (L/2)], all temperatures are rendered 

dimensionless by the substitution : 

U’ = _ 
2u I,(Lj2) + f,( - L/2) 

t,(L/2) - M- L/2) - f,(L/2) - &(- L/2)’ 
(8) 

This substitution, where U is t, t,, t, or IT; leaves equations (2)-(7) unchanged. The mean tempera- 
tures of the hot and cold fluids at the entry to the regenerator become 

ti(Lj2) = + 1 and &( - L/2) = - 1 respectively. 

Now the following normalizing substitutions are made 

s = al, _y = (L/2)& 8 = (a2z/r). 

hIa -= 
k N,, 

h2a -= 
k Nz, 

2W,S,a 
___ = M,, 

2 W,S,a 

kpL 
~ = M,, 

kpL 

t’(y, 0) = x(5,4, w, y, 0) = q5, i, 4, 

t;[(w), 0-j = XI(L.4, and t;[ - (L/2), f3] = &( - 1, z). 

- (9) 

At entry to the regenerator, the mean gas temperatures during the heating and cooling periods 
now become respectively 

xI(l,z) = 1, and 

j,( - 1, z) = - 1 

As a result of the substitutions (9), equations (2)-(7) become 

as 
- = 0, for c = 1 and z 3 0 
at; 
aE 
- = N,(E - x) = -MI $, for 2&I < z < (2fi + 1)Q and 5 = 0 
at 

a= 
-_=N,(E-x)=M,$, for (2fi+ 1)8~zg(2ii+2)52, and 5=0 
at 

x(6 4 = x1K-i 4, 

and in particular 

x(134 = x1(1,4 

I (10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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‘ x(5,4 = XZ(LZ)~ 

and in particular for (2fi + 1)sZ < z 6 (2 ti + 2)Q (16) 

x(-L4 =x2(-124 J 
In the above, 

a=$. (17) 
a” 

In this form, with x1(1, z) given for 0 < z < s1, and xZ( - 1, z) given for 51 < z < 2Q, the problem 
is to determine all 8. x1(5, z) and xZ(c. z). 

COLLINS AND DAWS’ SOLUTION 

Collins and Daws derived a solution for equation (11) and then imposed the boundary condition 
of equation (12) together with the reversal condition [lo]. The following result was obtained 

r co 

s”(O, 53 4 + 
aqo, r, z) S[ at - w, L 4 

IC 
b, exp [ -A@ - 41 dz 

0 S=l 

2R 

+ am 5,~) 

s[ a< - w, r;, 4 IC m b,expC-B,(z+2n-z)ldz=0 
1 - exp (- 2528,) (18)* 

0 s= 1 

In this equation, 

bs=2z+pg s 
s 

(19) 

where /I, is the sth root of the equation 

J/I tanJ/? = 1. (20) 

Z(O, L z) and [WO, L z)/a5] are related to the fluid temperature and its gradient in the direction 
of fluid flow by equations (13) and (14). Substituting these into equation (18) and then applying the 
result at times z and T + s1, where the origin of time is taken at the beginning of a heating period, 
equations (21) and (22) are obtained as follows 

alflK 4 + a2_ML 4 + aJ,K T) + aJ,K, 4 

f 2 i X,(Lz’)rj (T - z’)dz’ + 2 7 X,([,z’)~i(z - z’)dz’ = 0 (21) 2’ = 0 z’=O 

and, 

-alfl& r) + a2f2(5, r) + %X,(5, r) + a,X2(5, z) + 2 .,i, X2& Z')V (T - z') dz’ 

- 2 j X,([, z’) rj2(z - z’) dz’ = 0 
0 

l The derivation of this equation is given in the Appendix. 

(22) 
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+(1-~)~+f1]+[+$&/,]=2& 

[M,(l -$)$+fl] + [M,(l-+)+]=2x’ 

~(4 = fl b, exp (-AT) 

O” 
VlW = c b, exp II - &(T + fJ)l 

s=l El - evWd41 

m 
h(T) = c b, ev [ - Psb + fill 

[l + exp ( - PQ)l 
s=l 

z’ = 0 at the commencement of any heating period 

z’ = z, for 0 < z < Sz 

z’ = z - Sz, for D < z < 252 

and xi& z) transforms to fi(i, z’) 

Equations (21) and (22) have to be solved knowing 

fi(L 7) and A- 1, z). 

(23) 

(24) 

(25) 

(26) 

(27) 

1 (28) 

Collins and Daws then considered (n + 1) points dividing the range of z’ into n equaI intervals. so 
that at any particular value of i, (21) and (22) could be written approximately 

a,F, + a,F, + a,X; + A,X; = 0 (29) 

-a,F, + a,F, + a,X; + A,X; = 0 (30) 

where F,, F,, Xi and Xi, replacing fi, fi, X, and X, of (21) and (22), denote column matrices 
covering all values of T, and A, and A, are square (n + 1) x (n + 1) matrices. The elements of 
A, and A, depend on the particular finite difference forms selected to approximate the definite 
integrals occurring in (21) and (22). In the general case A, and A, would also depend on ;. 

The equations (29) and (30) can ultimately be arranged as 

aF* 
(31) 

(32) 
aF 
L+ T,F, + T.Fz = 0 
ac 
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where 

y1 = [(&A, - a;z)-’ +(A, - a,Z) + (AlA, - up)-’ a,(A, - a,Z) - 2-j 
&El - w~,)l 

,i’z = w2~1 - a>- i Q a I( 3 I + A,) - (A,& - a:I)-’ a,@, + a,Z)] 

~ 

(33) 

WC1 - ww1 
Tl _ _ Ecwl - do- 1 a a A 3 I + A& + (&A, - a;z)-l a&4, + a3Z) - Z] 

WC1 - WW] 

and 
& =11 _ Et&% - &I- 1 a 2( A, - a,Z) - (A,& - a;z)-‘u,(A, - +I)] 

MlP - (1/W] 

Equations (31) and (32) apply at all points along the regenerator, and at each value of [ defining 
the boundary of an element for numerical integration. If the physical properties are assumed to 
be invariant then equations (31) and (32) remain numerically identical along the regenerator. 

General considerations 

COMPUTATION PROCESS 

Computation, using the Collins and Daws’ technique, is conveniently considered in three stages : 

(i) application of numerical approximations to convert equations (21) and (22) to the form of 
(29) and (30); 

(ii) matrix arithmetic [see equations (33) and (34)] to obtain the matrices yl. y2. Tl and T2 of 
equations (31) and (32); and 

(iii) integration of (31) and (32) along the regenerator, with fluid entry temperature known as 
boundary conditions. 

Considering stage (i), we note that the matrices : 

and 

A; = A, - u,Z (35) 

A; = A, ,- u,Z (36) 

are functions only of s1 and of the approximate forms used for integrating with respect to time. 
The computation was developed using a Ferranti Pegasus digital computer, and programming 

was divided into two separate parts. The first was in Autocode, its function being that of(i) above; 
i.e. determination of the matrices A; and A; of equations (35) and (36) by some process for numerical 
integration with respect to time. The second part of the computation was programmed in machine 
code-its purpose being to compute stages (ii) and (iii). This programme required M,, M,, N,, N,, 
A; and A; as input data, and completed the computation by integrating numerically along the 
regenerator. 

Dividing the computation in this way offered the advantage that any number of examples could 
be computed for a single value of 9 without repeating the computation of A; and A;. A further 
advantage was that the programming effort required for stage (i) was minimised by using the 
comparatively simple Autocode. This is particularly advantageous for exploring possible computa- 
tion techniques, as was being done in this case. 
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Considering equations (21) (29) and (35) it will be seen that in order to establish the matrix A;, 
we have to represent 

in the form 

(38) 

where 

x,,isx, r,: . ( > 
This must be done for all integral values of r in the range 0 < r < n, where equations (21) and (22) 

are applied at discrete values of z given by z = (&/n). 

Since 

(39) 

equation (37) becomes 

Similarly, to establish the matrix A”, we have to represent 

in the form 

1, = 2 X2sP2rs (42) 
s=O 

where X,, is X,[cl (QJn)J Again, this must be done for all integral r in the range 0 z$ I < ~2. Also 

so that equation (41) becomes 

It is assumed that n is large enough so that Xi(i, z’) (where i = 1 or 2) is approximately linear through- 
out the range (f2r/n) - h < z’ < @W/n), where r is integral, and in the range 1 < r’ t$ n. 
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For any such interval we may then write 

X,(5, z’) = AZ’ + B 

where A and B will depend on [ and r’. 
For any such interval in the numerical computation of equations (40) or (44) we put 

U,(C, z’) = S qi(C - z’) dz’ 

where C = z - Sz for z’ < T and C = z for z’ > T. 
We obtain on integrating by parts. 

(45) 

(46) 

Applying equation (45) to the second term, we obtain 

$dzi = - aS:~:~l:~_~oi(c..)dZ’. 

From equation (45) 

(47) 

and so equation (47) becomes 

Writing 

ui(;,C) =; (r U,(C,z')dz' 

&W/n) -h 

(49) 

we can rearrange equation (48) to become 

For i = 1 or 2, we have from equations (26), (27) and (46) 

Ui(C, 2') = m bxpHW + 52 - z')ldz, = OD 
1 + (-l)iexp(-j?,B) c b, exp [ - &(C + ~2 - z’)] 

B, 1 + (-l)iexp(--&SZ) ’ 
(51) 

s= 1 .S=l 
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Substituting this in equation (49), we have 

With i = 1, using equations (51) and (52) in equation (50) and then applying r = 0, 1, 2 . n. suc- 
cessively, in equation (40), we obtain 

A’, = 

r 

where 

H,(h), H,(h) + H,@), f&&l - lY& H&n - w4 ~,vJ). ~,vd 
H,V4 H,(h)> H&h) + H,U& H,[(n - WI, 
H ,W, H&W, H,(h), H,(h) + H,W)> 

H,[(n - W], H&n - 2Pl, H,(h) + H,(Q), H,(Q) 
H,@-4 H&n - W], H&n - 2Y4 H,(h). H,(h) 

H,(Nh) = 2 
io b 

c 
-z- 

exp ( - NhPJ 

hi? Cl - exp (- fW1 
[exp (hp,) - 1 - h/&l, for 1 G N < n 

s= 1 

H,(Nh) = 2 
m b exp[-(N + l)h&] 

c 
-T-- 
hB? El - expC--Ws)] 

[exp (hp,) - I]” for 1 < N < n - 1 

s= 1 

and 

H,(Nh) = 2 
OD b 

c 
---$ exp (-Nhas) 

s=l hA [l - ev(-%I] 
[hPs exp (h&) - exp (h&) + l] for 1 $ N < n. 

(53) 

(54) 

(55) 

(56) 

Again, with i = 2, using equations (51) and (52) in (50) and then applying to equation (44) for r = 0, 
1.2, . . . n, successively, we obtain 

A; = 

-KG& -H ,[(a - l)h], -H&n - 2)h], 

WC& H,(h) - H&2), -H&n - f)hl, 
fLCW H,(h)> H,(h) - h&% 

H,GW> Hdhh 

H&n - l)h], H&n - 2)h]. H&a - WI, 
H&Q H,[(n - l)h], H&n - WI, 

- H,(U). - H,(2W 
1 

- H,W - H,(h) 

(57) 

-H&n - 1)h-j. --H-&n - I@] 

H,(h) - H&2). -H&l 

H,(h). Hdh) 
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where 

H,(Nh) = 2 
a, b 

c 
-L 

exp ( - NhB,) 

hBf [1 + exp ( - Q/U1 
[exp (h/I,) - 1 - h/?,], for 1 < N < n 

s= 1 

m 
H,(m) = 2 

c 

b exp [-(N + 1)&I,] 
L 
Mf [l + exp ( - QPJI 

[exp(h&) - l]‘, for 1 < N < n - 1 

s= 1 

(58) 

(59) 

and 

H,(Nh) = 2 
m b 

c 
-L exp (- NhPs) 
h/f El + exp (- Q/U] 

. [ha, exp (ha,) - exp (h/?,) + 11, for 1 < N < n. (60) 

s= 1 

A number of relationships were derived to enable all the matrix elements of (53) and (57) to be 
computed to any preselected accuracy [8]. In the worked examples these were always computed 
to within kO.1 per cent. 

Integration along the regenerator 
After the matrices A; and A; have been calculated, it becomes possible to calculate the matrices 

yr. y2, Ti and T, of equations (31) and (32). The latter can be combined into a single differential 
equation 

aF’ 
ay + P’F’ = 0 

where F’ is the column matrix {F,, F ,} and P’ is a square matrix defined by 

p’= 
Yl : Y2 

[ 1 

. . .‘. . . 

T, ; Tl . 

(61) 

(62) 

An equation of the type (61) can be applied at all positions along the regenerator, and in particular 
at each of the (2m + 1) points which divide the regenerator into 2m equal parts. If we now number 
these points from zero at midway along the regenerator to --VI at the cold end and +m at the hot 
end, then c = (r/m) at the point numbered r. At this point, suppose that F’ and P’ of equation (61) 
have values F: and P: Then, for each interval along the regenerator, we replace equation (61) by 
the approximation 

FL+, - F: 
llm 

+ #:+lF:+l + P:F:) = 0, 

or 

F:+, = (2ml + Pi+ J1 (2ml - P:)Fi. (63) 

When physical properties are invariant along the regenerator this becomes 

F:+, = (2mZ + P’)- ’ (2ml - P’)F:. (64) 

Knowing any FL the regenerator problem can be solved completely by repeated application of 
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this recurrence relation (64). However, the known boundary conditions are the entry temperatures 
of the two fluids and so for a counter-flow heat exchanger no F: is initially known completely. 
However, F,, _m and F,, +,,, are specified completely, and in particular are known in each period at 
the (n + 1) points which divide the range of R into n equal parts. Illustrating this, for n = 5 and 
constant fluid entry temperatures, we thus have 

and 

F,,_, = I-1, -1, -1, -1, -1, -11 (65) 

F 1,+m = (+1, +I, +I, +1, +1, +I}. (66) 

We must now solve relation (64) [or (63) in the more general case] along the regenerator for the 
boundary conditions (65) and (66). 

A total of (n + 2) solutions are first obtained, each for a particular hypothetical boundary 
condition. Illustrating-this for n = 5, seven hypothetical boundary states are defined for F’_, as 
follows : 

-1 
-1 
-1 
-1 
-1 
-1 
-1 

0 
0 
0 
0 
0 

-1 
-1 
-1 
-1 
-1 
-1 

0 
-1 

0 
0 
0 
0 

. . . F’i; = -1 
-1 
-1 
-1 
-1 
-1 

0 
0 
0 
0 
0 

-1 

At a position [ = (r/m) along the regenerator, the true solution F: is given by 

F; = K,F:‘l’ + K,F:‘2’ + _ _ . + K,+2F;(n+2) 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

(67) 

(68) 
where F$‘is the solution for Fi which satisfies the hypothetical boundary state F’$, defined in 
(67) for the special case where n = 5. 

In equation (68), K, to Kn+2 are coefficients which do not vary the regenerator, i.e. they are 
independent of r. These constants can be determined by applying equation (68) at r = --m and 
r = + m, so as to satisfy equations (65) and (66). 

Equation (65) gives only one relationship, namely 
n+2 

c K,= +l. 

s= I. 
(69) 

Equation (66) gives the (n + 1) equations 

n+2 

c F$\K,= +l,wheren+2<j<2n+2. 
s=l 

(70) 

Here F$\ is the jth element of the column matrix F$). Thus (69) and (70) together give (n -I 2) 
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equations, which can be solved for the (n + 2) unknown constants K. This is most conveniently 
done using matrix algebra. 

The problem is now solved completely, since the calculated constants K can be applied to equa- 
tion (68) for r = --m after which equation (63) can be applied successively along the regenerator. 

DEVELOPMENT FOR UNEQUAL HEATING AND 

COOLING PERIODS 

If 52, has values 52, and Sz, for the heating and cooling periods respectively, then the following, 
more general form, must be used in place of equation (18) 

co 

w, r, 7) + 
r aqo, (, 2) S[ ag - w, 594 

IC 
b, exp [ - A(7 - 4 dz 

0 s=l 
01 +fb 

+ I[ wo, i, 4 
- w, 5, 4 11 m b,exp[-B,(7+al+az-z)ldz=0 

’ 
(71)* 

X 1 - exp [-A@, + WI 
0 s=l 

We need only consider one cycle, and so choose for convenience the range 0 < z < Q2, + Q, 
where z = 0 commences a heating period. 

We now introduce a time v defined by 

u=+, for 0<z<!S2, 
L I 

z - sz, 
u = ---, for Q2, < z < Sz, + s2,. 

Q, 

In this case, ~(5, z) transforms as follows 

x(L 4 = _fl(L 4 for 0 < z < a,. 
and x(L Z) =_fi(5, 4 for Q, < z < 0, + a,. 

(73) 

Equations (13) and (14) apply, but with the revised time scale we now have 

as 
- = N,(9 - x) = -M, $, for 
at 

t = 0, 0 < z < 8, (74) 

and 
aE 
-=N,(Z-x)=M,$, for t=O, !S,<z<8,+sZ,. 
a< 

(75) 

We now use equations (74) and (75) to substitute for 8(0,5, z) and [Z(O, 5, z)@{] in terms of x 
and (ax/a[) in equation (71), and apply the result first at z = r and then at z = [(8,/52,)7 + Sz,] 

(where 7 < Jz,). This process, together with the relations (73) give the two equations 

l The derivation of this equation is given in the Appendix. 
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+ j q&(<,u).g~,(i+ 1 +2-a)]ds+ 1 4,(C,u).+@ii 1 -u)]du=O (76) 

I> =i L’= 0 

and 

where 

and 

42 = 

g(u) = 

cc 

c b, exp ( - Au) 
1 - exp [-Bs(fJl + WI 

s= 1 

du = 0 (77) 

(78) 

(79) 

(80) 

(81) 

In these equations, u has its zero at the commencement of the heating and cooling periods. Also, 
in each period, u increases linearly with time to unity at the end of a heating or cooling period. For 
any u = Z, where 0 < Z < 1, therefore, there are corresponding points in the heating and cooling 
periods, occurring at equal proportions of the total relevant duration. 

As well as allowing Q2, and Sz, to be unequal, these more general equations also permit variation 
of brick properties along the regenerator. This advantage is obtained because at all points of the 
regenerator the parameter, u, varies linearly with time between the values of zero and unity. 

We now have to solve equations (76) and (77), knowing fi(l, 7) and fi( - 1, Z). 
Divide the range of? into n equal intervals by (n + 1) points in each period. Using approximate 

forms for the definite integrals, apply equations (76) and (77) at each of these points. We then have, 
at each value of i, 

and 
a,F, + (B, + d,l)& + 014; = 0 (82) 

a,F, + (B2 + dJ)& + D&l = 0 (83) 

where F,, F,, C#J; and &, replacing fi, fi, ‘c$~ and C#J~ of equations (76) and (77), denote column 
matrices covering values at each discrete level of Z, and B,, B,, D, and D, are square (n + 1) x (n + 1) 
matrices whose elements will depend on the approximations used for the definite integrals occurring 
in (76) and (77). 
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Also. N, 
al=-- d,= 1 

WJ, - 1) 

N, 
. 

(84) 

a2=-- 
d,= 1 

QR,W, - 1) : 

In the completely general case, B,, B,, D, and D, will depend on [, while a,, a2, d, and d, will 
depend on both [ and Z. Eliminating first (6; and then (b; between equations (82) and (83) we obtain 

a,F, - a,D,(B, + d,l)-’ F, + [(B, + d,f) - D,(B, + d&-l D,] 16; = 0 W) 
and 

a,Fz - a,D,(B, + d,Z)-‘F, + [(B, f d,Z) - D,(E, + d,Z)-’ DJ Cp; = 0. (86) 

Invertingthematrices[(B, + d,Z) - D,(B, + dJ)-‘D,]and[(B, + d,Z) - D2(B, + d,Z)-‘DJ 
from equations (85) and (86) respectively, and then substituting for & and 4; from equations (79) 
and (80) we obtain 

=1 ~ + VrF, f V,F, = 0 a[ 
and 

aF2 
ai + Z,F, + Z,F, = 0 (88) 

where 

and 

v, = - {a:N4 + 40 - D,P2 + d,O-’ D,I-’ - QpJ) 

f-GM1 

v2 = ha,W, + d24 W f% + 40 - D,l-‘1 

%N, 

z, = b4[U32 f d2Z) - D,(B, + d,O-l &I-’ - a,Q$) 
---.._ 

Q2M2 - 

(89) 

w-8 

(91) 

z 
2 

= - alazf(& + diI)&” (B2 + U) - K’j 

W42 
192) 

Equations (8’7) and (88) now have the same form as equations (31) and (32) and so may be solved 
by any method suitable for the solution of (31) and (32). 

Zntegrut~on of the generu~ equations in time 
In equations (‘76) and (77X if (n + 1) points divide the range of u into n equal parts and if n is 

large enough to allow the approximation that 4, and +2 are linear in the range 

rt 1 
&<- 
n n 

for all integral r, 0 < r < n - 1, then by a method similar to that described earlier for numerical 
integration of equations (40) and (44) with respect to time, we obtain for the matrices I?,, B,, D1 
and D,. 
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-t 
-IT 

L/ 
4 

+ 
-122 

d3 

a? 
+ 

n 
9 

62 t 

d 
+ 

- 
E 

E 

+ 
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Where j = 2 when i = 1 and j = 1 when i = 2, 

(95) 

and 

O” b c f exp ( - Q&4 

Ps 1 - exp 1 -B,(Q, f QJI 
bp (-F)- 1 +$I. (96) 

S= 

To confirm the validity of these generalised 
forms, example 1 of Table 1 was repeated using 
equations (89)-(94) and then integrating (87) 
and (88) along the regenerator by the method 
already described for integration of equations 
(31) and (32). 

The functions, Q and R were not evaluated 
as accurately as the functions H. In particular, 
R(0) may have been in error by as much as 
5 per cent (all values of H being computed to 
within 0.1 per cent). However, from the results 
shown in Table 2, it can be seen that the heat 
transfer rate agrees with that of the more 
accurate computation to better than 3 per cent. 
This agreement is considered to be sufficiently 
close to confirm the validity of the generalised 
algebra. 

RESULTS 

Several examples have been computed using 
the method defined by equations (53)(60), 
all elements of the matrices A; and A; being 
computed to within 0.1 per cent. The step sizes 
for numerical integration were defined by 
m = 3 and n = 5, and this contained the 
computation time within reasonable bounds. 
Table 1 shows details of the print-out from one 
example, together with explanatory comments. 
An immediate problem is to determine the 
range of parameters over which such a computa- 
tion produces reasonably accurate results. A 
major difficulty is that, at present, there is no 

Table 1. Example of print-out from Pegasus digit4 computer 

Example No. 1 
Input Data 

D M1 N1 Mz N, 

04176 @514943 1.363459 0.33658 0.232786 

Print-out Explanation 

_ 

+ 0396299 
+ 0.279602 
+ 0239483 
+0.213133 
+@192410 
+0.174237 
-0.495163 

Values of K, to K, 

2 K,=l 
S=l 

See equation (69) 

__- __-- 

* i 

-1000000 
- 1~000000 
- 1GOOOOO fz 
- 1QOcOOO 
- 1wOOOO 
- l%uwOO 
+ 0.098865 
+0.215561 
+@255681 
+0282030 fi 
+ 0.302754 
+0320927 I 
-0.745189 
-0770942 
-0.779417 
-@784915 
-0.789210 
-0.792965 
+ @252574 
+@362915 
+ 0400361 
+ @424723 
+ 0443744 
fO.460330 

0 
WO8352 
016704 
@25056 
033408 
041760 
0 -1 
008352 
0.16704 
@25056 
W33408 
0.41760 

4 
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Table 1. contd 

-0.513010 
-0557361 
-0.572116 
- 0.581726 
-0589259 
-0.595858 
+ 0.397923 
+ @502050 
+ 0.536493 
+(I558571 
+ 0.575621 
+0.590371 

- 0.300690 
-0,358084 
-0.377363 
- 0.389980 
- 0.399900 
-0.408612 
+0.536864 
f0.634043 
+@664617 
+@683781 
+ 0698356 
f0.710831 

-0105994 
-0.172053 
-0194475 
-0.209215 
- 0.220843 
-0.231079 
+ 0.673720 
+0,760250 
+ 0.785055 
fO800134 
+0,811373 
+0820861 

+ 0.0728 19 
+0QO1606 
-0.022841 
-0.038993 
-0.051782 
- 0.063068 
+0~819091 
+0.882125 
f0.897504 
+0.906523 
+O-913080 
f0.918528 

+ 0.236977 
+0.163591 
+0138052 
+0.121072 
f0.107567 
+0-095613 
+ o-999999 
+ l-oOoOO1 
+ 1OOOoOO 
+ 14zloocm 
+ 1flooooo 
+ l%KlOOO 
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i 
Table 1. contd. 

1 3 

+0336580 
+0514943 
+ 1.137542 
+ 0.743975 
+ 0.382874 

+0.383105 

M, 
MI 
Mean change in f2 = z* 
Mean change in fi = K* 
M, x K 

I 
Equality of these 
quantitities 

M, x K confirms heat 
balance 

* Computed using the Newton-Cotes type of ap- 
proximation. In this case the heat balance error is 
(@383105 - 0.382874)/0.382874 x 100% = @06%. 

Hausen’smethod [6] gives M,;Tf; = M,K = @3871 

0 

+1 

method available to determine the error of com- 
putation absolutely. A heat balance test at the 
end of the computation is a relevant factor, but 
this cannot be numerically related to the error in 
the computed rate of heat transfer. Initially, the 
validity of the computation was confirmed [S] by 
comparing the computed mean preheat level 
with that calculated using Hausen’s method [6]. 
For most examples the heat balance error was 
less than 1 per cent, and in these cases agreement 
with the Hausen method was within the limits 
imposed by reading values from Hausen’s 
graphical presentation of various parameters. 
Among these successfully computed examples 
[8] were two for which previous workers 
obtained badly balanced results when attempt- 
int to use the Collins and Daws’ method. The 
authors currently regard a computation with a 
heat balance error of less than 1 per cent as 
being reasonably accurate. 

From the computed examples, two effects 
are worthy of note. 

1. The computed heat balance error increases 
with increasing values of bL. 

2. For isolated examples, even with low 
values of Q, the computation has produced 
results which are obviously absurd. 

The effect of increasing s1 is shown in Table 3. 
In general, R is usually less than unity for open 
hearth furnace regenerators, and in this region 
the computed heat balance is generally less 
than 1 per cent in error (except for cases of 
extreme inequality of M, and M2). However, 
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Table 2. Comparison of gas exit temperatures computed by 
original and generalised algebra 

Data given : As Example 1, Table 1. 

r 5 Original General&d 

fi 
0 +0098865 +0.166138 
0.08352 +0215561 + 0.239495 

-1 
0.16704 +@255681 + 0.268053 
@25056 + 0282030 +0296076 
0.33408 +@302754 +@314295 
0.41760 + 0.320927 +0.330435 

fi 
0 + 0236977 +@209140 
0.08352 +@163591 +0.139073 

fl 
cl6704 +@138052 +0114244 
Q25056 +@121072 + 0.102454 
0.33408 f@l07567 + 0089450 
@41760 +0@5613 + @077950 

Heat balance 
Mean change in fz = K + 1.137542 + 1.116072 
Mean change in fi = q + 0.743975 +@725085 
Mz x 
M, x !? 

+0382874 +0,375893 
+@383105 tO.373377 

o/0 error in heat balance 0.06 0.67 

for blast furnace stoves, fi may be of the order 
of 6.0. In this region more accurate finite 
difference forms are needed, or the intervals 
for stepwise integration should be reduced. 

In isolated examples where absurd results 
have been obtained, it has always been possible 
to obtain a sensible computation for the 
“inverted” example (obtained by inter-changing 
the values of M, and N, with those of M, and 
NJ. From symmetry, the solution of any 
problem, can be obtained from the solution of 
its invert. Table 4 illustrates one example of 

Table 4. Example of computation producing absurd results 

Example No. D M, N, M, N, 

7 0.015 @l @6 0.5 0.45 
8 0015 o-5 0.45 01 06 

Computation of example 7 produced values of fi and 
f2 ranging from - lo3 to + lo*, whereas heat transfer laws 
limit the possible range from - 1.0 to + 1.0. By inverting 
example 7 (i.e. interchanging M, and N, with M, and NJ to 
become example 8, no anomalies occurred in the computa- 
tion, and the following result was obtained 

Ma M2 v* Heat balance Hausen’s Method 
error, ‘J, M,K = MzK 

0.197441 0.197583 @07 0193 

From the symmetry of the problem, Mix must be the 
same for the original example 7 as for its invert, example 8. 

this type. Since the inverted problems are 
computed accurately and sensibly, it is con- 
cluded that the diffkulty is probably due to 
singularities arising in the matrix arithmetic, 
rather than instability of the finite difference 
forms. 

In Table 2, the results for Example 1 (see 
Table l), obtained using the generalised algebra 
[equations (87H96)], are compared with the 
results obtained using equations (53H60). The 
functions Q and R were summed to only 20 
terms in order to avoid overflow in the course 
of computation (the programme for computing 
A; and A; included a facility for accurately 
estimating the residuals of slowly convergent 

Table 3. Effect of 62 on preheat level and on accuracy of computation 
In examples 2-6, M,, N,, M, and N, were constant at their respective values as in example 1 (see Table 1). 

Example 
no. 

Computed results Discrepancy 
62 in heat Hausen’s method 

M,K M2K balance, y0 M,x = Mzafz 

2 @1 0391220 0.391299 002 @390 
3 @5 0.382103 &381772 CO87 0.380 
4 1.0 0.379383 0.378376 0266 0.376 
5 3.0 @373714 0368743 1.35 0.365 
6 60 a353491 @342176 3.31 0.343 
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series). Neglect of all terms after the 20th in the 
summation of the series Q and R could have 
produced an error as large as 5.25 per cent for 
the numerical value of R(0). However, R(0) 
converges particularly slowly, and the summa- 
tion of all other Q and R probably approached 
the preselected accuracy of 0.1 per cent, to 
which all individual terms of these series were 
calculated. Since all terms of A; and A; were 
computed to within 0.1 per cent, the results 
obtained using these matrices are probably 
more accurate than those obtained using the 
more generalised algebra. However, it can be 
seen from Table 2 that the heat transfer rates 
computed by these two methods agree to 
within 3 per cent, which was considered to be 
sufficient confirmation of the validity of the 
generalised algebra. 

For computation using equations (53)-(60), 
an Autocode programme on the Ferranti 
Pegasus digital computer required approxi- 
mately 16 min to compute elements of A; and 
A; to an accuracy of f 0.1 per cent, with n = 5. 
Integration along the regenerator required a 
further 9 min. For a single example, therefore, 
the total computation time is approximately 
25 min. However, if several examples are com- 
puted for a single value of Sz, the average 
computation time converges to 9 min, since 
A; and A; need not be recalculated if s1, is 
invariant. Further development will probably 
reduce the computation time, since emphasis to 
date has been on verifying the validity and 
feasibility of the method. Also by current 
standards, Pegasus is not a particularly fast 
computer. 

CONCLUSIONS 

1. The method of computation outlined by 
Collins and Daws is valid, and its successful 
application depends on accurate summation of 
the infinite series involved, and on the selection 
of suitable finite difference forms for numerical 
integration. 

2. The method has been adapted to cope with 

systems where the heating and cooling periods 
are unequal. 

3. Future work will include 

(a) a more comprehensive investigation of the 
factors affecting the accuracy of computa- 
tion ; 

(4 

(b) an examination of the few isolated 
examples for which computation produces 
obviously absurd results; and 
development of techniques for more 
accurate summations of the infinite series 
Q and R arising in the generalised algebra. 
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APPENDIX 

Derivation of integro-diflerential Equations 

Note on symbols 
In this appendix, the symbols A, B, F, f, f,, fi, L, L-l, p 

and z’ are used differently from the definitions in the main 
list of symbols. 

A(c, p) and B([, p) are arbitrary functions of integration. 
F, f, fi, fi, are clarified in the text. 
For any function, 9(z), of z, the Laplace transform is 

given by 

L[sF(z)] = 5 F(z). exp (-pz) dz, 
Z=O 

and if F(z) is the Laplace transform of 9,(z) then 

K’[F(z)] = 9,(z). 

z’ is used as a dummy variable. 

Introduction 
The method follows closely that given by Collins and 

Daws. However, their work has not appeared in generally 
available literature and their derivation was stated for the 
special case of equal heating and cooling periods [equation 
(18)]. For these reasons the derivation of equation (71) is 
outlined here in some detail. When heating and cooling 
periods are of equal duration, equation (71) reduces to 
equation (18). 

Derivation 
Taking the Laplacian Transform of equation (11) we 

obtain 

a23 
- - pE = - q&5,0) 
x2 

where E(t, i, p) is the Laplace transform of g(l, 4’, z). 
The solution of (A. 1) is 

9 = AK P) cash (5 - 1) JP + BK, PI sinh (t - 1) JP 

- ~W,,i,O)sinh(t. - SA,/pdt,. 64.2) 

Equation (12) requires @/al) = 0 when < = 1. By 
applying this boundary condition after differentiating (A.2), 
we obtain an expression for B(c, p). This is now substituted 

into (A.2), and the resulting equation is applied at 5 = 0, 
giving 

z(O, i, P) = AK P) Gosh JP 

sinh Jp 1 
- ~ 

JP s 
E((6 L& 0) cash (1 - <) Jp dr. (A.3) 

0 
A(c, p) is now eliminated between (A.3) and its differential, 

giving the result 

1 

W,L P) = & 
s 

=((6 C, ‘4 cash (1 - 5) JP d5 
0 

cash Jp a9 g 

C-1 fm at 
(A.4) 

5=0 

where 

f(p) = cash Jp + Jp sinh Jp. (A.5) 

To invert (A.4) we first find the inverse of F(p) = 
cash Jp 

Jp 

Using L-r {F(z)} = k 
s 

w (~4 FM dp 

y-im 

= sum of residues of F(p) at all its poles, and all poles are 
on one side of y [ 151, 

we have 

Thus (A.4) becomes : 

= & s =(5, L 0) cash (1 - 5) Jp dt 
0 

64.6) 

where - 8, are the roots of cash Jp + Jp sinh Jp = 0 (the 

more convenient equivalent is Jj, tan Jfi, = 1). 
Similarly 

I 

& s St<, 6.3 0) cash (1 - 0 ,/‘p dt 
0 

m 

= L 
[C 

b,exp(-Az) ‘~(~,~,O)Cosjbs~~J:B.dr]. 
s s s= 1 cl 

(A.7) 

Putting this into (A.6) and using 

L[f,(z)] LCfzC43 = L{i fk’) f2G - ~‘1 dz’} 
0 
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we obtain on inversion 

: 
w, L 2) + 

i[ 

aqo, [, z’) 
~ 

at 
- E(0, I& z’) I 

CL 

x c b, exp [ - &(z - z’) dz’ 

s- L 
cc 1 

= 
c 

b, exp (-AZ) 
s 

Et& L 0) 
\= I 0 

ccxi (1 - 5) JBS d(, (A,8) 

cos JPS 

We now apply (A.8) first at z = T and then at z = T + n(S2, 

+ Q,) 

qo, i. T) + 
aqo, i, 4 S[ ~ 

d5 
- qo, i, z) 1 

0 

00 m 

x c b, exp [ -B,(T - z)] dz = 
c 

b, exp (- B,T) 

6= 1 s= 1 

x s q6 i, 0) 
cos (1 - 5) JB, ay. 

cm JA 
0 

S[O. (. T + nw2, + a&] 
,+“(n, +n,, 

+ s [ WA i, z) ~ - qo, [, z) at 1 
0 

cc 

x -s b, exp { -Ir,[7 + n(Q, + a,) - z]} dz 

m 

= c b, exp { -B,[T + nWl + QAI) 
s= 1 

(A.9 
x f b,ev-Ab - 41 f: exp[-B,r(Q, + Wldz 

I’ 1 I- 1 

a. 

r asco. i. Z) 
+ J dr - m i> 4 c 

0 

s_, kev[-BAT - 4ldz 

m 

= -s b, exp i --A[~ + n(Q, + fh)l~ 

1 

s ~(5 ( o)~~‘(’ - 5)JfiQj(, 
7 3 

cos JS, 
(A. 11) 

(A. 10) 0 

For the definite integral on the left hand side of (A.lO), 

we use 

~+nw~+nn~ 
R,fR*l z,ns + w 

s F(z)dz = j F(z) dz + j F(z) dz 

0 0 Q, +% 

“,RI +fli nm1+Rl)+r 

+ s F(z) dz + 5 F(z) dz 

,“-lKn, +n,j !@I +%I 

and for each interval, omitting the first, we successively make 

the substitutions 

I = z - (a, + sz,), I = z - 2(52, + Q,). 

F = z - n(O, + a,). 

H and aZ/i3[ are unaffected by these substitutions. because 

H is cyclic, of period (0, + R2). For the same reason, the 

first term on the left hand side of (A.lO) can be written 

3(0, L T). 

In this way we obtain from (A. 10) 

Subtracting (A. 11) from (A.9), we obtain 

n, +n2 ma 

- b, exp [-BAT - 4 

0 s- 1 

x exp [-/-WI + WI 
[ 

exp [-A@4 + Q,,l 
1 - ev-B,(Q, + WI 1 

dz 
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30 exp [-/WI + WI 
= c ’ 1 - exp [-WI + WI 

dz = 

b, exp (-A) { 1 - exp [-B&4 + WI} c b, exp (-A) 

3’1 

L x 

X s s(t [ 0) cm (1 - 5) JBs d,z, 
3 , 

cos J\/8; 
(A. 12) 

0 

1 

s s(r [ o) cost1 - wsdg, 
3 3 

cos JS, 
(A.13) 

0 

Substituting this result into (A.9) we obtain equation (71) 

which reduces to equation (18) for 0, = 8, = 61. 
(A.12) is valid for all n, and in particular, for large n, it 

reduces to 

Ot+% m 

am i. z) _ q ( z) 

at )’ IC 
b, exp [ -MT - 41 

CALCUL DES TEMPERATURES TRANSITOIRES DANS DES REGENERATEURS 

Rr5sum&Une methode non iterative pour calculer les variations de temperature dans un rtgenerateur 
en tquilibre cychque a Btt developpee par des auteurs precedents. Des essais anterieurs pour appliquer cette 
technique ont donne des rtsultats erronb mais les auteurs de cet article ont obtenu des rtsultats raison- 
nables pour des exemples particuliers sans diminuer la dimension du pas de I’integration numtrique. Ceci 
a et8 complete en s’assurant que certaines series apparaissant dans le calcul sont sommtes correctement et 
en choisissant des forma suflisamment precises pour I’inttgration numerique. 

La mtthode avait deja Ctt d&iv&e pour des regtntrateurs operant avec des periodes tgales de chauffage 
et de refroidissement mais a ttt ici modifite pour le cas le plus general. On indique la direction d’un 

developpement ulterieur. 

BERECHNUNG DER INSTATIONAREN TEMPERATURVERTEILUNG IN 
REGENERATOREN 

Zusammenfassung--In Arbeiten anderer Forscher ist eine nicht iterative Methode zur Berechnung der 
Temperaturlnderungen in einem Regenerator im zyklischen Gleichgewicht entwickelt worden. Frtihere 
Versuche, diese Tech& anzuwenden, haben ungenaue Ergebnisse geliefert, es ist jedoch den oben 
genannten Autoren gelungen, ftir ausgewlhlte Beispiele vernthtftige Resultate zu erzielen. ohne dabei 
die Schrittweite ftir die numerische Integration verringern zu mtiss&, 

Dies wurde erreicht, indem die exakte Summierung einiger in der Berechnung auftretender unendlicher 
Reihen sichergestellt und geniigend genaue Formen fiir dienumerische Integration ausgewlhlt wurden. 

Die Methode wurde zuerst fiir Regeneratoren mit gleichlangen Heiz- und Kiihlphasen entwickelt, ist 
aber jetzt i% den allgemeinen Fall moditiziert worden. Die Richtung hir weitergehende Untersuchungen 

wird aufgezeigt. 

PACYET IIEPEXOAHbIX TEMIIEPATYP B PEIEHEPATOPAX 

hiaoTaqmI-PaKee 6nn pa3BsT 6e3HTepa~xoKnbdi MeTog pameTa 113MeHeHIZR TeMnepaTyprd 

B pWeHepaTOpe C l(AKJIAW?CKHM paBHOBeCHeM. &M3~bI~yIJJkie nOnbITKA IICnOJIb30BaTb 3Ty 

MeTO#lKy AaJlI4 HeTO'IHble pe3yJlbTaTbI, HO aBTOpbl HaCTOflII@i pa6oTbr ~OJly'4lVlH Haae?KHble 

RaHHbIe JJJIH I136paHHbIX npkiMepOB, He yMeHblIIaR pa3Mepa IIIal'a YEiCJIeHHOrO HHTerpHpO- 

BaHIIR. aTOr ynaJlOCb R06kiTbCR, y~OCTOBepABIIIKCb B TOM, YTO OnpeAWIeHHbIe 6eCKOHeqHble 
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PRR~I, BoamKaIowHe np~ pacueTax, CYMMHP~TCR .nyTeM m6opa TOYHOFO MeToga YmJIeB- 
HOP0 RHTWpHpOBaHkifi. npeHEgC? MeTOE 61m pa3pa6oTaH HnJ3 pWeHC!paTOpOB, pa6oTamwx 
c partmnw nepiiol[am Harpesa M oxnamAeHm3, a ceatsac Mo~m$aq~posa~ muff donee oriurero 

cnyqart. Hat.feseno Ha~paB~eH~e ~a~bHe~~~x paspa6oToK. 


